Pre_GI: SWBIT SVG BLASTP

Query: NC_020211:2985157 Serratia marcescens WW4, complete genome

Lineage: Serratia marcescens; Serratia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This organism was discovered in 1819 by Bizio who named the organism after the Italian physicist Serrati. It was considered a nonpathogenic organism until late in the 20th century, although pathogenicity was noted as early as 1913. Serratia marcescens is an opportunistic human pathogen that is increasingly associated with life-threatening hospital-acquired infections. It is an environmental organism that has a broad host range, and is capable of infecting vertebrates and invertebrates, as well as plants. In humans, Serratia marcescens can cause meningitis (inflammation of the membrane surrounding the brain and spinal cord), endocarditis (inflammation of heart muscle) and pyelonephritis (inflammation of the kidneys). Many strains are resistant to multiple antibiotics. Environmental isolates are noted by production of the red pigment prodigiosin.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_006512:1942000 Idiomarina loihiensis L2TR, complete genome

Lineage: Idiomarina loihiensis; Idiomarina; Idiomarinaceae; Alteromonadales; Proteobacteria; Bacteria

General Information: This is the type strain for this organism, which was isolated from a hydrothermal vent at a depth of 1300 m from the Lo'ihi Seamount southeast of Hawaii. This organism grows optimally in salt concentrations of 7.5 to 10%. Genome comparison has suggested that the bacterium has maintained its amino acid transport and degradation systems but lost sugar transport and certain sugar metabolic genes suggesting that it lives on amino acids rather than sugars. This may be in keeping with the environment this organism grows in, which is at hydrothermal deep sea vents that are characterized by collections of proteinaceous particles. This organism may colonize these particles by producing exopolysaccharides.