Pre_GI: SWBIT SVG BLASTP

Query: NC_017511:1883663 Neisseria gonorrhoeae TCDC-NG08107 chromosome, complete genome

Lineage: Neisseria gonorrhoeae; Neisseria; Neisseriaceae; Neisseriales; Proteobacteria; Bacteria

General Information: One of two pathogenic Neisseria, this species causes the sexually transmitted disease (STD) gonorrhea, which is the leading reportable STD in adults in the USA. This human-specific organism colonizes and invades the mucosal surface of the urogenital epithelium, crosses the epithelial barrier, and ends up multiplying on the basement membrane. The Opa proteins are responsible for the opaque colony phenotype due to the tight junctions between adjacent Neisseria, and are also responsible for tight adherence to host cells. This organism, like Neisseria meningitidis, is also naturally competent for DNA uptake.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_010120:452771 Neisseria meningitidis 053442, complete genome

Lineage: Neisseria meningitidis; Neisseria; Neisseriaceae; Neisseriales; Proteobacteria; Bacteria

General Information: Causes septicemia and meningitis. The second of two pathogenic Neisseria, this organism causes septicemia and is the leading cause of life-threatening meningitis (inflammation of the meninges, the membrane surrounding the brain and spinal cord) in children. This organism typically residies in the nasopharynx cavity but can invade the respiratory epthelial barrier, cross into the bloodstream and the blood brain barrier, and cause inflammation of the meninges. Pathogenicity factors include the surface proteins (porins and opacity proteins), and the type IV pilus (which is also found in Neisseria gonorrhoeae). Pathogenicity factors include the surface proteins (porins and opacity proteins), and the type IV pilus (which is also found in Neisseria gonorrhoeae). This organism, like Neisseria gonorrhoeae, is naturally competent, and protein complexes at the cell surface recognize the uptake signal sequence in extracellular DNA, an 8mer that is found at high frequency in Neisseria chromosomal DNA.