Pre_GI: SWBIT SVG BLASTP

Query: NC_017160:2740870 Yersinia pestis D182038 chromosome, complete genome

Lineage: Yersinia pestis; Yersinia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Specific virulence factors are encoded within pathogenicity islands (PAIs) that are required for the invasive phenotype associated with Yersinia infections. One key virulence plasmid contained by the three human-specific pathogens is pCD1/pYv, which encodes a type III secretion system for the delivery of virulence proteins that contribute to internalization into the host cell. It is the causative agent of plague (bubonic and pulmonary) a devastating disease which has killed millions worldwide. The organism can be transmitted from rats to humans through the bite of an infected flea or from human-to-human through the air during widespread infection. Yersinia pestis is an extremely pathogenic organism that requires very few numbers in order to cause disease, and is often lethal if left untreated. The organism is enteroinvasive, and can survive and propagate in macrophages prior to spreading systemically throughout the host. Yersinia pestis also contains a PAI on the chromosome that is similar to the SPI-2 PAI from Salmonella that allows intracellular survival in the organism.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_004347:1038253 Shewanella oneidensis MR-1, complete genome

Lineage: Shewanella oneidensis; Shewanella; Shewanellaceae; Alteromonadales; Proteobacteria; Bacteria

General Information: This strain was isolated from Oneida lake in New York, USA. Potential bioremediation organism. This genus includes species that inhabit a wide range of environments and are capable of utilizing a wide variety of electron acceptors during anaerobic respiration including some insoluble metal oxides while using very few carbon sources such as lactate or acetate. This group of organisms have been studied extensively for their electron transport systems. This organism is a facultative anaerobe that is capable of using a wide variety of terminal electron acceptors during anaerobic respiration which may make it valuable for bioremediation. Since the bacteria can reduce chromium and uranium from the liquid phase to form insoluble compounds, they may be used to eliminate these two environmental pollutants from water.