Pre_GI: SWBIT SVG BLASTP

Query: NC_016894:1092005 Acetobacterium woodii DSM 1030 chromosome, complete genome

Lineage: Acetobacterium woodii; Acetobacterium; Eubacteriaceae; Clostridiales; Firmicutes; Bacteria

General Information: Acetobacterium woodii is a Gram positive, motile, strict anaerobic, acetogenic bacterium, that relies on Na+ as coupling ion in bioenergetic reactions. The organism can use a wide range of substrates, such as sugars, alcohols, methoxylated aromatic acids or C1 compounds. Electrons derived from these electron donors are used in the Wood-Ljungdahl-pathway where the organism fixes CO2 and produces acetate. The pathway of CO2-fixation is coupled to energy conservation via a chemiosmotic mechanism, one enzyme that seems to be involved is the Rnf complex. The produced Na+ gradient can be used to drive ATP-synthesis or flagella rotation. The ATP synthase is a member of the F1FO class of enzymes and has an unusual hybrid rotor. Can use alternative electron acceptors like the lignin degradation product caffeate.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_005810:3493607 Yersinia pestis biovar Microtus str. 91001, complete genome

Lineage: Yersinia pestis; Yersinia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Causative agent of plague. Specific virulence factors are encoded within pathogenicity islands (PAIs) that are required for the invasive phenotype associated with Yersinia infections. One key virulence plasmid contained by the three human-specific pathogens is pCD1/pYv, which encodes a type III secretion system for the delivery of virulence proteins that contribute to internalization into the host cell. It is the causative agent of plague (bubonic and pulmonary) a devastating disease which has killed millions worldwide. The organism can be transmitted from rats to humans through the bite of an infected flea or from human-to-human through the air during widespread infection. Yersinia pestis is an extremely pathogenic organism that requires very few numbers in order to cause disease, and is often lethal if left untreated. The organism is enteroinvasive, and can survive and propagate in macrophages prior to spreading systemically throughout the host. Yersinia pestis consists of three biotypes or serovars, Antiqua, Mediavalis, and Orientalis, that are associated with three major pandemics throughout human history. pMT1 encodes a protein, murine toxin, that aids rat-to-human transmission by enhancing survival of the organism in the flea midgut. Yersinia pestis also contains a PAI on the chromosome that is similar to the SPI-2 PAI from Salmonella that allows intracellular survival in the organism.