Pre_GI: SWBIT SVG BLASTP

Query: NC_015428:700479 Lactobacillus buchneri NRRL B-30929 chromosome, complete genome

Lineage: Lactobacillus buchneri; Lactobacillus; Lactobacillaceae; Lactobacillales; Firmicutes; Bacteria

General Information: Environment: Host, Intestinal microflora; Isolation: Fuel ethanol production facility; Temp: Mesophile. Lactobacillus buchneri is a lactic acid bacillus commonly isolated from dairy and plant products as well as the human oral cavity. This organism is heterofermentative, producing acetic and lactic acid. It also has potential for use as a biofuel producing agent.

No Graph yet!

Subject: NC_005945:5202176 Bacillus anthracis str. Sterne, complete genome

Lineage: Bacillus anthracis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: This strain carries the anthrax toxin plasmid pXO1 but not the capsule plasmid pXO2 and is therefore avirulent but toxigenic. It is the counterpart to the Pasteur strain that carries pXO2 but not pXO1. This strain is often used for vaccine development. Under starvation conditions this group of bacteria initiate a pathway that leads to endospore formation, a process that is thoroughly studied and is a model system for prokaryotic development and differentiation. Spores are highly resistant to heat, cold, dessication, radiation, and disinfectants, and enable the organism to persist in otherwise inhospitable environments. Under more inviting conditions the spores germinate to produce vegetative cells. This organism was the first to be shown to cause disease by Dr. Louis Pasteur (the organism, isolated from sick animals, was grown in the laboratory and then used to infect healthy animals and make them sick). This organism was also the first for which an attenuated strain was developed as a vaccine. Herbivorous animals become infected with the organism when they ingest spores from the soil whereas humans become infected when they come into contact with a contaminated animal. PA/LF and PA/EF complexes are internalized by host cells where the LF (metalloprotease) and EF (calmodulin-dependent adenylate cyclase) components act. At high levels LF induces cell death and release of the bacterium while EF increases host susceptibility to infection and promotes fluid accumulation in the cells.