Query: NC_014212:3206860 Meiothermus silvanus DSM 9946 chromosome, complete genome Lineage: Meiothermus silvanus; Meiothermus; Thermaceae; Thermales; Deinococcus-Thermus; Bacteria General Information: Isolation: Hot spring; Country: Portugal; Temp: Thermophile; Temp: 50C; Habitat: Hot spring. An aerobic, thermophilic, nonmotile Gram-negative bacterium isolated from the hot spring located at the end of a 450 m tunnel and from thermal water piped to a spa at Vizela in northern Portugal. M. silvanus is of special interest as it causes colored biofilms in the paper making industry and may thus be of economic importance as a biofouler. M. silvanus has also been detected in the gut of an invasive wood-boring beetle and in seawater adjacent to a Pacillopora meandrina coral colony at Palmyra Atoll.
- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark); - hypothetical protein; - cds: hover for description
General Information: Originally identified as Pseudomonas sp. LB400 that was found in contaminated soil in upstate New York, USA, this organism is now classified in the genus Burkholderia. Polychlorinated biphenyl-degrading bacterium. Member of the genus Burkholderia are versatile organisms that occupy a surprisingly wide range of ecological niches. These bacteria are exploited for biocontrol, bioremediation, and plant growth promotion purposes. Burkholderia xenovorans has been found on fungi, animals, and from human clinical isolates such as from cystic fibrosis (CF) patients. It may be tightly associated with white-rot fungus, as the degadation of lignin by the fungus results in aromatic compounds the bacterium can then degrade. This organism is exceptionally capable of degradation of polychlorinated biphenyls (PCBs), which are environmental pollutants, and thus it may play a role in bioremediation of polluted and toxic sites and is studied as a model bioremediator. PCBs can be utilized as the sole carbon and energy source by this organism. The pathways for degradation of PCBs have been extensively characterized at both the genetic and the molecular level and have become a model system for the bacterial breakdown of these very persistent environmental contaminants.