Pre_GI: SWBIT SVG BLASTP

Query: NC_012029:1525929 Halorubrum lacusprofundi ATCC 49239 chromosome 1, complete genome

Lineage: Halorubrum lacusprofundi; Halorubrum; Halobacteriaceae; Halobacteriales; Euryarchaeota; Archaea

General Information: Formerly Halobacterium lacusprofundi, this organism is an extremely halophilic archaeon isolated from Deep Lake, Antarctica. Extremely halophilic archaeon isolated from the Antarctic. Halorubrum lacusprofundi is a red pigmented halophilic archaeon which has been found in hypersaline marine enviornments. Originally thought to be a psychrophile, further research determined that the optimum temperature for growth for Halorubrum lacusprofundi was from 31 - 37 degrees C.

No Graph yet!

Subject: NC_009012:3421000 Clostridium thermocellum ATCC 27405, complete genome

Lineage: Clostridium thermocellum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain is a well studied producer of endoglucanase and several restriction endonucleases. Thermophilic cellulose degrading bacterium. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. Some species are capable of producing organic solvents (acetone, ethanol, etc,), molecular hydrogen and other useful compounds. This organism is a thermophilic anaerobe that produces an extracellular enzyme system capable of degrading crystalline cellulose to soluble sugars that are further utilized as the carbon source for growth.