Query: NC_011205:3078732 Salmonella enterica subsp. enterica serovar Dublin str. CT_02021853
Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria
General Information: This is a bovine-adapted serovar that is genetically related to S. Enteritidis that lives in the bovine intestinal tract and can causes disease in humans. While rare in incidence, S. dublin infection classically produces a syndrome of sustained bacteremia with fever, resulting in high morbidity and mortality. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.
Subject: NC_021182:2883716 Clostridium pasteurianum BC1, complete genome
Lineage: Clostridium pasteurianum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria
General Information: Environment: Soil; Isolation: Coal-cleaning residues; Temp: Mesophile; Temp: 30C. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. Known opportunistic toxin-producing pathogens in animals and humans. Some species are capable of producing organic solvents (acetone, ethanol, etc,), molecular hydrogen and other useful compounds. Clostridium pasteurianum was first isolated from soil by the Russian microbiologist Sergey Winogradsky. This organism is able to fix nitrogen and oxidize hydrogen into protons. The genes involved in nitrogen fixation and hydrogen oxidation have been extensively studied in this organism.