Query: NC_011004:5283648 Rhodopseudomonas palustris TIE-1, complete genome Lineage: Rhodopseudomonas palustris; Rhodopseudomonas; Bradyrhizobiaceae; Rhizobiales; Proteobacteria; Bacteria General Information: This strain was isolated from an iron-rich microbial mat from School Street Marsh in Woods Hole, MA, USA. It grows photoautotrophically with Fe(II), H2, or thiosulfate as the electron donor, photoheterotrophically with a variety of organic carbon sources and chemoheterotrophically in the dark. This organism has a diverse metabolism and is capable of growth using light, inorganic, or organic compounds as energy sources and carbon dioxide or organic compounds as carbon sources. Commonly found in soil and water environments this bacterium is also capable of degrading a wide range of toxic organic compounds, and may be of use in bioremediation of polluted sites. The bacterium undergoes differentiation to produce a stalked nonmotile cell and a motile flagellated cell. In the presence of light, this bacterium produces a number of intracellular membranous vesicles to house the photosynthetic reaction centers.
- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark); - hypothetical protein; - cds: hover for description
General Information: This organism was isolated from the blood of wild rats and from fleas obtained from wild rats. Transmission of these organisms is often through an insect vector. Once in a host, this intracellular pathogen is internalized by an actin-dependent mechanism, and primarily targets endothelial cells, although other cells can be infected. The proliferation of the vascular endothelium (bacillary angiomatosis) is characterisitic of Bartonella infection and results in multiplication of the bacterium's host cells. Infected macrophages are stimulated to release vascular endothelial growth factor (VEGF) and interleukin 1 beta, both of which promote angiogenesis. Endothelial cells are also stimulated to grow and divide by direct contact with bacterial cells. In addition, programmed cell death (apoptosis) of endothelial cells is inhibited, combatting a common mechanism eukaryotic cells use to deal with bacterial infection. Other pathogenicity factors include pili and outer membrane adhesins for attachment to host cells. This organism is genetically related to Bartonella elizabethae which was isolated from a case of endocarditis in a human.