Pre_GI: SWBIT SVG BLASTP

Query: NC_010742:1794000 Brucella abortus S19 chromosome 1, complete sequence

Lineage: Brucella abortus; Brucella; Brucellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Causes bovine brucellosis. They are highly infectious, and can be spread through contact with infected animal products or through the air, making them a potential bioterrorism agent. Once the organism has entered the body, it can become intracellular, and enter the blood and lymphatic regions, multiplying inside phagocytes before eventually causing bacteremia (spread of bacteria through the blood). Once the organism has entered the body, it can become intracellular, and enter the blood and lymphatic regions, multiplying inside phagocytes before eventually causing bacteremia (spread of bacteria through the blood). Virulence may depend on a type IV secretion system which may promote intracellular growth by secreting important effector molecules. This organism was first noticed on the island of Malta by Dr. David Bruce during an epidemic among British soldiers. It is the primary cause of bovine brucellosis, which results in enormous (billions of dollars) economic losses due primarily to reproductive failure and food losses. In man, it causes undulant fever, a long debilitating disease that is treated by protracted administration of antibiotics.

No Graph yet!

Subject: NC_006511:4119332 Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC

Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This serovar has a narrow host range and causes a typhoid-like (paratyphoid fever) illness in humans. It is especially prevalent in southern and eastern Asia, and has been associated with some particularly virulent outbreaks. A number of isolates are increasingly antibiotic resistant. Causes enteric infections. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis, from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.