Query: NC_010159:1861465 Yersinia pestis Angola, complete genome
Lineage: Yersinia pestis; Yersinia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria
General Information: This strain was isolated prior to 1985 and belongs to the antiqua biovar. It can ferment rhamnonse and melibiose which is a property usually associated with Yersinia pseudotuberculosis. Strain Angola belongs to a group of atypical Yersinia pestis strains with genotypic similarities that are intermediate between Y. pestis and Y. pseudotuberuclosis strains. Genotypic studies indicate that strain Angola is the oldest Y. pestis strain analyzed to date. It carries three plasmids that are similar to other Y. pestis plasmids but have aberrant sizes. The critical virulence factor, the V antigen, is different than that encoded by typical strains of Y. pestis and there is a deletion that affects the F1 operon. Strain Angola has been shown to be virulent by aerosol in mice.
Subject: NC_008149:587689 Yersinia pestis Nepal516, complete genome
Lineage: Yersinia pestis; Yersinia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria
General Information: Isolated from a soil sample from Nepal. Causative agent of plague. Specific virulence factors are encoded within pathogenicity islands (PAIs) that are required for the invasive phenotype associated with Yersinia infections. One key virulence plasmid contained by the three human-specific pathogens is pCD1/pYv, which encodes a type III secretion system for the delivery of virulence proteins that contribute to internalization into the host cell. It is the causative agent of plague (bubonic and pulmonary) a devastating disease which has killed millions worldwide. The organism can be transmitted from rats to humans through the bite of an infected flea or from human-to-human through the air during widespread infection. Yersinia pestis is an extremely pathogenic organism that requires very few numbers in order to cause disease, and is often lethal if left untreated. The organism is enteroinvasive, and can survive and propagate in macrophages prior to spreading systemically throughout the host. Yersinia pestis consists of three biotypes or serovars, Antiqua, Mediavalis, and Orientalis, that are associated with three major pandemics throughout human history. pMT1 encodes a protein, murine toxin, that aids rat-to-human transmission by enhancing survival of the organism in the flea midgut. Yersinia pestis also contains a PAI on the chromosome that is similar to the SPI-2 PAI from Salmonella that allows intracellular survival in the organism.