Query: NC_009881:283500 Rickettsia akari str. Hartford, complete genome
Lineage: Rickettsia akari; Rickettsia; Rickettsiaceae; Rickettsiales; Proteobacteria; Bacteria
General Information: This strain was isolated from mites in Hartford. Causative agent of Rickettsialpox. Members of this genus, like other Rickettsial organisms such as Neorickettsia and Anaplasma, are obligate intracellular pathogens. In both groups, the bacteria are transmitted via an insect, usually a tick, to a host organism where they target endothelial cells and sometimes macrophages. They attach via an adhesin, rickettsial outer membrane protein A, and are internalized where they persist as cytoplasmically free organisms. Rickettsia akari causes a mild disease, Rickettsialpox, which is an acute fever-inducing illness transmitted by a hematophagous mite that infects the common house mouse and bites humans. Infection by this organism may be confused with anthrax due to the black eschar. This bacterium is a member of the spotted fever group of Rickettsiales and is endemic to New York, USA, but is also found in other cities in the USA, Russia, South Korea, and South Africa.
Subject: NC_003305:1297785 Agrobacterium tumefaciens str. C58 chromosome linear, complete
Lineage: Agrobacterium tumefaciens; Agrobacterium; Rhizobiaceae; Rhizobiales; Proteobacteria; Bacteria
General Information: Gram-negative soil bacterium. This is the most widely studied species in the genus. Strains of Agrobacterium are classified in three biovars based on their utilisation of different carbohydrates and other biochemical tests. The differences between biovars are determined by genes on the single circle of chromosomal DNA. Biovar differences are not particularly relevant to the pathogenicity of A. tumefaciens, except in one respect: biovar 3 is found worldwide as the pathogen of gravevines. This species causes crown gall disease of a wide range of dicotyledonous (broad-leaved) plants, especially members of the rose family such as apple, pear, peach, cherry, almond, raspberry and roses. Because of the way that it infects other organisms, this bacterium has been used as a tool in plant breeding. Any desired genes, such as insecticidal toxin genes or herbicide-resistance genes, can be engineered into the bacterial DNA, and then inserted into the plant genome. This process shortens the conventional plant breeding process, and allows entirely new (non-plant) genes to be engineered into crops.