Query: NC_009720:1006201 Xanthobacter autotrophicus Py2, complete genome
Lineage: Xanthobacter autotrophicus; Xanthobacter; Xanthobacteraceae; Rhizobiales; Proteobacteria; Bacteria
General Information: Alkene-degrading bacterium. Xanthobacter autotrophicus is a nitrogen-fixing methylotroph, commonly isolated from organic rich soil, sediment and water. This organism uses an alkene-specific monooxygenase to convert propene to epoxypropane. This monooxygenase is also able to catalyze the initial step in the cometabolism of chlorinated alkenes such as vinyl chloride and trichloroethene. The Xanthobacter autotrophicus alkene monooxygenase and other genes involved in alkene degradation are located on a 320 kb megaplasmid.
Subject: NC_000921:1007519 Helicobacter pylori J99, complete genome
Lineage: Helicobacter pylori; Helicobacter; Helicobacteraceae; Campylobacterales; Proteobacteria; Bacteria
General Information: This strain was isolated in 1994 in the USA from a patient with duodenal ulcer. This genus consists of organisms that colonize the mucosal layer of the gastrointestinal tract or are found enterohepatically (in the liver). It was only recently discovered (1983) by two Australians (Warren and Marshall) that this organism was associated with peptic ulcers. It is one of the most common chronic infectious organisms, and is found in half the world's population. This organism attacks the gastric epithilial surface, resulting in chronic gastritis, and can cause more severe diseases including those that lead to gastric carcinomas and lymphomas, peptic ulcers, and severe diarrhea. It is an extracellular pathogen that persists in the gastric environment, which has a very low pH, by production of the urease enzyme, which converts urea to ammonia and carbon dioxide, a process which can counteract the acidic environment by production of a base. The toxins include cytolethal distending toxin, vacuolating cytotoxin (VacA) that induces host epithelial cell apopoptosis (cell death), and the cytotoxin associated antigen (CagA) which results in alteration to the host cell signalling pathways. The CagA protein is translocated into host cells by a type IV secretion system encoded by the cag pathogenicity island.