Query: NC_009257:1636633 Francisella tularensis subsp. tularensis WY96-3418 chromosome,
Lineage: Francisella tularensis; Francisella; Francisellaceae; Thiotrichales; Proteobacteria; Bacteria
General Information: This strain was isolated from a human finger wound. Causative agent of tularemia. This organism was first identified by Edward Francis as the causative agent of a plague-like illness that affected squirrels in Tulare county in California in the early part of the 20th century. The organism now bears his name. The disease, which has been noted throughout recorded history, can be transmitted to humans by infected ticks or deerflies, infected meat, or by aerosol, and thus is a potential bioterrorism agent. This organism has a high infectivity rate, and can invade phagocytic and nonphagocytic cells, multiplying rapidly. Once within a macrophage, the organism can escape the phagosome and live in the cytosol. It is an aquatic organism, and can be found living inside protozoans, similar to what is observed with Legionella.
Subject: NC_009480:1261961 Clavibacter michiganensis subsp. michiganensis NCPPB 382, complete
Lineage: Clavibacter michiganensis; Clavibacter; Microbacteriaceae; Actinomycetales; Actinobacteria; Bacteria
General Information: Phytopathogen that causes bacterial wilt and canker of tomato (Lycopersicon esculentum). This is considered to be the most important bacterial disease of tomato causing substantial economic losses worldwide. Bacteria enter the plant by wounds on root or stem and then find their way into the xylem allowing a massive systemic colonization. The first stage of the disease is characterized by unilateral wilting of leaves. Wilting then spreads to all leaves, canker lesions develop on the stem and the plant dies. If infection occurs at a late stage of plant development, plants can survive and yield fruit that may have spots, so called bird's eyes. Often the seeds will be infected and this has been the major source for outbreaks of Clavibacter michiganensis subsp. michiganensis infections in agriculture. Members of the Clavibacter genus are known to produce antimicrobial compounds.