Pre_GI: SWBIT SVG BLASTP

Query: NC_009089:117980 Clostridium difficile 630, complete genome

Lineage: Peptoclostridium difficile; Peptoclostridium; Peptostreptococcaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain is the epidemic type X variant that has been extensively studied in research and clinical laboratories. It produces both toxin A, and B. Causative agent of pseudomembranous colitis. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. Some species are capable of producing organic solvents (acetone, ethanol, etc,), molecular hydrogen and other useful compounds. This species is now recognized as the major causative agent of pseudomembranous colitis (inflammation of the colon) and diarrhea that may occur following antibiotic treatment. This bacterium causes a wide spectrum of disease, ranging from mild, self-limiting diarrhea to serious diarrhea and, in some cases, complications such as pseudomembrane formation, toxic megacolon (dilation of the colon) and peritonitis, which often lead to lethality among patients. The bacteria produce high molecular mass polypeptide cytotoxins, A and B. Some strains produce only one of the toxins, others produce both. Toxin A causes inflammatory reaction involving hypersecretion of fluid and hemorrhagic necrosis through triggering cytokine release by neutrophils. Alteration of intestinal microbial balance with antibiotic therapy and increased exposure to the bacterium in a hospital setting allows C. difficile to colonize susceptible individuals. Moreover, it has been shown that subinhibitory concentrations of antibiotics promote increased toxin production by C. difficile.

No Graph yet!

Subject: NC_006369:3058000 Legionella pneumophila str. Lens, complete genome

Lineage: Legionella pneumophila; Legionella; Legionellaceae; Legionellales; Proteobacteria; Bacteria

General Information: This serogroup I strain was responsible for a major outbreak in France. Causes Legionnaire's disease. This organism is a non-marine bacterium usually found growing inside other organisms such as protozoans in aquatic environments. They can also be found in soil, freshwater, and in biofilms. The first outbreak of Legionnaire's disease occurred in 1976 at an American Legion convention and the resulting pneumonia-like disease resulted in 34 deaths. The cause of the disease was traced to Legionella bacteria. Once the bacteria are brought into the lungs they make contact with alveolar macrophages and are internalized where they can cause severe respiratory distress. Internalization occurs through specialized vacuoles (replicative phagosomes) that allow the bacteria to grow and replicate prior to escape from the macrophage. Formation of the replicative phagosome, which requires reprogramming of the normal phagosome maturation pathway, requires a type IV secretion system called the Dot/Icm system. This type IV system is closely related to the conjugative system of plasmid ColIb-P9, and is involved in the secretion of numerous protein components that aid in formation of the replicative phagosome. Other virulence determinants include a set of multidrug transporters and other efflux pumps for toxic compounds that may allow the organism to persist in its habitat, a set of LPS phase variable genes that enhance immune evasion, and a type II secretion system for transport of hydrolases.