Query: NC_008600:3488000 Bacillus thuringiensis str. Al Hakam, complete genome Lineage: Bacillus thuringiensis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria General Information: Produces insect toxin. This organism, also known as BT, is famous for the production of an insecticidal toxin. The bacterium was initially discovered as a pathogen of various insects and was first used as an insecticidal agent in the early part of this century. This organism, like many other Bacilli, is found in the soil, where it leads a saprophytic existence, but becomes an opportunistic pathogen of insects when ingested. The specific activity of the toxin towards insects and its lack of toxicity to animals has made this organism a useful biocontrol agent. The delta-endotoxin, which is produced during the sporulation part of the life cycle, causes midgut paralysis and disruption of feeding by the infected insect host. The delta-endotoxin, which is produced during the sporulation part of the life cycle, causes midgut paralysis and disruption of feeding by the infected insect host. The delta-endotoxin, which is produced during the sporulation part of the life cycle, causes midgut paralysis and disruption of feeding by the infected insect host. The presence of a parasporal crystal, which is outside the exosporium of the endospore, is indicative of production of the toxin, and serves as a marker for this species.Activation of the toxin typically requires a high pH environment such as the alkaline environments in insect midguts followed by proteolysis. Various toxin genes specific for a variety of insects have been studied, and many are now being used in genetically modified plants which have been engineered to produce the toxin themselves, eliminating the need to produce sufficient amounts of B. thuringiensis spores.
- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark); - hypothetical protein; - cds: hover for description
General Information: This strain carries the anthrax toxin plasmid pXO1 but not the capsule plasmid pXO2 and is therefore avirulent but toxigenic. It is the counterpart to the Pasteur strain that carries pXO2 but not pXO1. This strain is often used for vaccine development. Under starvation conditions this group of bacteria initiate a pathway that leads to endospore formation, a process that is thoroughly studied and is a model system for prokaryotic development and differentiation. Spores are highly resistant to heat, cold, dessication, radiation, and disinfectants, and enable the organism to persist in otherwise inhospitable environments. Under more inviting conditions the spores germinate to produce vegetative cells. This organism was the first to be shown to cause disease by Dr. Louis Pasteur (the organism, isolated from sick animals, was grown in the laboratory and then used to infect healthy animals and make them sick). This organism was also the first for which an attenuated strain was developed as a vaccine. Herbivorous animals become infected with the organism when they ingest spores from the soil whereas humans become infected when they come into contact with a contaminated animal. PA/LF and PA/EF complexes are internalized by host cells where the LF (metalloprotease) and EF (calmodulin-dependent adenylate cyclase) components act. At high levels LF induces cell death and release of the bacterium while EF increases host susceptibility to infection and promotes fluid accumulation in the cells.