Pre_GI: SWBIT SVG BLASTP

Query: NC_007712:2806500 Sodalis glossinidius str. 'morsitans', complete genome

Lineage: Sodalis glossinidius; Sodalis; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Sodalis glossinidius is known exclusively in endosymbiosis with tsetse flies. It is maternally transmitted, and is one of the few bacterial endosymbionts of insects that can be cultured successfully in vitro. Genome data reveals a high proportion of pseudogenes in this species, many of which were, in their functional state, involved in defense or transport of carbohydrates and inorganic ions. This suggests a degenerative adaptation to the immunity and restricted nutritional status of the host.

No Graph yet!

Subject: NC_011080:1166951 Salmonella enterica subsp. enterica serovar Newport str. SL254,

Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: The SL254 strain is an MDR strain from one of two distinct lineages of the Newport serovar. Salmonella enterica subsp. enterica serovar Newport is common worldwide. Outbreak investigations and targeted studies have identified dairy cattle as the main reservoir this serotype. Antimicrobial resistance (Newport MDR-AmpC) is particularly problematic in this serotype, and the prevalence of Newport MDR-AmpC isolates from humans in the United States has increased from 0% during 1996-1997 to 26% in 2001. MDR strains have been recorded as resistant to ampicillin, chloramphenicol, streptomycin, sulphonamides and tetracycline (ACSSuT) and many of these strains show intermediate or full resistance to third-generation cephalosporins, kanamycin, potentiated sulphonamides, and gentamicin. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis, from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.