Query: NC_004129:4333302 Pseudomonas fluorescens Pf-5, complete genome
Lineage: Pseudomonas protegens Pf-5; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria
General Information: This strain can suppress the diseases caused by Rhizoctonia solani and Pythium ultimum which affect cotton plants. The production of a number of antibiotics (pyrrolnitrin, pyoluteorin, and 2,4-diacetylphloroglucinol) as well as the production of siderophores (which may affect the ability of competing organisms to obtain environmental iron) by this strain can inhibit phytopathogen growth such as the above-mentioned fungi. The genome of this organism contains a number of genes, estimated at 5.7 % of the chromosome, that encode proteins that are involved in secondary metabolism. A large number of repeat elements (REP) are also found in the genome in greater numbers than in related Pseudomonas spp.
Subject: NC_004578:6138669 Pseudomonas syringae pv. tomato str. DC3000, complete genome
Lineage: Pseudomonas syringae group genomosp. 3; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria
General Information: While pathogenic on Arabidopsis thaliana, it is mainly characterized as causing bacterial speck disease on tomato plants, which has a large economic impact. This organism is mainly endophytic and is a poor colonizes of plant surfaces but can multiply within the host. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This species includes many plant pathogens of important crops, which makes it a model organism in plant pathology. Its natural environment is on the surface of plant leaves and it can withstand various stressful conditions, like rain, wind, UV radiation and drought. It can colonize plants in a non-pathogenic state and can rapidly take advantage of changing environmental conditions to induce disease in susceptible plants by shifting gene expression patterns.