Pre_GI: SWBIT SVG BLASTP

Query: NC_003384:109036 Salmonella enterica subsp. enterica serovar Typhi str. CT18 plasmid

Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain is a multidrug resistant strain of Salmonella typhi. This serovar is a human-specific organism that causes the life-threatening illness Typhoid fever which is acquired by coming into contact with contaminated food or water. Causes enteric infections. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis, from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_004349:3938 Shewanella oneidensis MR-1 plasmid pMR-1, complete sequence

Lineage: Shewanella oneidensis; Shewanella; Shewanellaceae; Alteromonadales; Proteobacteria; Bacteria

General Information: This strain was isolated from Oneida lake in New York, USA. Potential bioremediation organism. This genus includes species that inhabit a wide range of environments and are capable of utilizing a wide variety of electron acceptors during anaerobic respiration including some insoluble metal oxides while using very few carbon sources such as lactate or acetate. This group of organisms have been studied extensively for their electron transport systems. This organism is a facultative anaerobe that is capable of using a wide variety of terminal electron acceptors during anaerobic respiration which may make it valuable for bioremediation. Since the bacteria can reduce chromium and uranium from the liquid phase to form insoluble compounds, they may be used to eliminate these two environmental pollutants from water.