Pre_GI: SWBIT SVG BLASTP

Query: NC_002488:1157684 Xylella fastidiosa 9a5c, complete genome

Lineage: Xylella fastidiosa; Xylella; Xanthomonadaceae; Xanthomonadales; Proteobacteria; Bacteria

General Information: This strain was derived from a pathogenic strain (8.1b) isolated in 1992 in France that had come from infected twigs derived from the sweet orange strain Valencia in Brazil in the same year. This organism was first identified in 1993 as the causal agent of citrus variegated chlorosis, a disease that affects varieties of sweet oranges. Other strains of this species cause a range of diseases in mulberry, pear, almond, elm, sycamore, oak, maple, pecan and coffee which collectively result in multimillion dollar devastation of economically important plants. Xylella fastidiosa is similar to Xanthomonas campestris pv. campestris in that it produces a wide variety of pathogenic factors for colonization in a host-specific manner including a large number of fimbrial and afimbrial adhesins for attachment. It does not contain a type III secretion system, but possesses genes for a type II secretion system for export of exoenzymes that degrade the plant cell wall and allow the bacterium to colonize the plant xylem.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_004088:4202247 Yersinia pestis KIM, complete genome

Lineage: Yersinia pestis; Yersinia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Causative agent of plague. Specific virulence factors are encoded within pathogenicity islands (PAIs) that are required for the invasive phenotype associated with Yersinia infections. One key virulence plasmid contained by the three human-specific pathogens is pCD1/pYv, which encodes a type III secretion system for the delivery of virulence proteins that contribute to internalization into the host cell. It is the causative agent of plague (bubonic and pulmonary) a devastating disease which has killed millions worldwide. The organism can be transmitted from rats to humans through the bite of an infected flea or from human-to-human through the air during widespread infection. Yersinia pestis is an extremely pathogenic organism that requires very few numbers in order to cause disease, and is often lethal if left untreated. The organism is enteroinvasive, and can survive and propagate in macrophages prior to spreading systemically throughout the host. Yersinia pestis consists of three biotypes or serovars, Antiqua, Mediavalis, and Orientalis, that are associated with three major pandemics throughout human history. pMT1 encodes a protein, murine toxin, that aids rat-to-human transmission by enhancing survival of the organism in the flea midgut. Yersinia pestis also contains a PAI on the chromosome that is similar to the SPI-2 PAI from Salmonella that allows intracellular survival in the organism.