Pre_GI: SWBIT SVG BLASTN

Query: NC_020207:1346579 Enterococcus faecium NRRL B-2354, complete genome

Lineage: Enterococcus faecium; Enterococcus; Enterococcaceae; Lactobacillales; Firmicutes; Bacteria

General Information: This genera consists of organisms typically found in the intestines of mammals, although through fecal contamination they can appear in sewage, soil, and water. They cause a number of infections that are becoming increasingly a problem due to the number of antibiotic resistance mechanisms these organisms have picked up. Both Enterococcus faecalis and Enterococcus faecium cause similar diseases in humans, and are mainly distinguished by their metabolic capabilities. This opportunistic pathogen causes a range of infections similar to those observed with Enterococcus faecalis, including urinary tract infections, bacteremia (bacteria in the blood), and infective endocarditis (inflammation of the membrane surrounding the heart). Hospital-acquired infections from this organism are on the rise due to the emergence of antiobiotic resistance strains and has led to the rise of vancomycin-resistant Staphylococcus aureus strains due to the horizontal transfer of Enterococcus antibiotic resistance genes. Little is known about the virulence mechanisms in this organism, but the genome does encode an esp gene for the surface adhesin. Vancomycin resistant isolates are more typically Enterococcus faecium than Enterococcus faecalis.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010723:2231834 Clostridium botulinum E3 str. Alaska E43, complete genome

Lineage: Clostridium botulinum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain was probably isolated from salmon eggs associated with a foodborne case of botulism in Alaska, however the exact details are not available. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. This organism produces one of the most potent and deadly neurotoxins known, a botulinum toxin that prevents the release of acetylcholine at the neuromuscular junction, thereby inhibiting muscle contraction and causing paralysis. In most cases the diseased person dies of asphyxiation as a result of paralysis of chest muscles involved in breathing. The spores are heat-resistant and can survive in inadequately heated, prepared, or processed foods. Spores germinate under favorable conditions (anaerobiosis and substrate-rich environment) and bacteria start propagating very rapidly, producing the toxin.Botulinum toxin, and C. botulinum cells, has been found in a wide variety of foods, including canned ones. Almost any food that has a high pH (above 4.6) can support growth of the bacterium. Honey is the most common vehicle for infection in infants. Food poisoning through C. botulinum is the most frequent type of infection caused by this bacterium. The wound botulism that occurs when C. botulinum infects an individual via an open wound is much rarer and is very similar to tetanus disease. There are several types of botulinum toxin known (type A through type F), all of them being neurotoxic polypeptides. The most common and widely distributed are strains and serovars of C. botulinum that produce type A toxin.