Query: NC_017179:1133510 Clostridium difficile BI1, complete genome
Lineage: Peptoclostridium difficile; Peptoclostridium; Peptostreptococcaceae; Clostridiales; Firmicutes; Bacteria
General Information: Clostridium difficile BI1 is a human strain isolated in the United States in 1988. This species is now recognized as the major causative agent of pseudomembranous colitis (inflammation of the colon) and diarrhea that may occur following antibiotic treatment. C. difficile infection represents one of the most common nosocomial (originating in a hospital) infections. This bacterium causes a wide spectrum of disease, ranging from mild, self-limiting diarrhea to serious diarrhea and, in some cases, complications such as pseudomembrane formation, toxic megacolon (dilation of the colon) and peritonitis, which often lead to lethality among patients. The bacteria produce high molecular mass polypeptide cytotoxins, A and B. Some strains produce only one of the toxins, others produce both. Toxin A causes inflammatory reaction involving hypersecretion of fluid and hemorrhagic necrosis through triggering cytokine release by neutrophils. Cytotoxin B depolymerizes actin, the major protein of the cytoskeleton, and thus aids in destruction of tissues. The combined action of the toxins results in necrosis of superficial epithelium and edema (fluidic swelling) in affected areas of intestine. Proliferation of C. difficile is normally prevented by normal intestinal microflora, which is believed to inhibit attachment of the bacterium and its toxins to intestinal walls. Alteration of intestinal microbial balance with antibiotic therapy and increased exposure to the bacterium in a hospital setting allows C. difficile to colonize susceptible individuals. Moreover, it has been shown that subinhibitory concentrations of antibiotics promote increased toxin production by C. difficile.
Subject: NC_008262:2498000 Clostridium perfringens SM101, complete genome
Lineage: Clostridium perfringens; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria
General Information: This is a enterotoxin-producing food poisoning strain. Causative agent of gas gangrene. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. Known opportunistic toxin-producing pathogens in animals and humans. Some species are capable of producing organic solvents (acetone, ethanol, etc,), molecular hydrogen and other useful compounds. This organism is a causative agent of a wide spectrum of necrotic enterotoxicoses. It also causes such animal diseases as lamb dysentery, ovine enterotoxemia (struck), pulpy kidney disease in lambs and other enterotoxemias in lambs and calves. It is commonly found in the environment (soil, sewage) and in the animal and human gastrointestinal tract as a member of the normal microflora. It is a fast growing (generation time 8-10 min) anaerobic flesh-eater. Active fermentative growth is accompanied by profuse generation of molecular hydrogen and carbon dioxide. It is also oxygen tolerant which makes it an easy object to work with in laboratories. C. perfringens have been developed and the species became a model organism in clostridial genetic studies. Known isolates belong to five distinct types (A, B, C, D, and E) that are distinguished based on the specific extracellular toxins they produce. Known isolates belong to five distinct types (A, B, C, D, and E) that are distinguished based on the specific extracellular toxins they produce. All types produce the alpha toxin (phospholipase C). Type A strains that cause gas gangrene produce alpha toxin, theta (hemolysin), kappa (collagenase), mu (hyaluronidase), nu (DNAse) and neuraminidase which are all the enzymatic factors aiding the bacterium in invading and destruction of the host tissues. Type C strains produce alpha toxin, beta toxin and prefringolysin enteritis. In addition to alpha toxin, Type B strains produce beta toxin, types B and D produce the pore forming epsilon toxin and type E strains produce iota toxin.