Query: NC_016940:1698000 Saprospira grandis str. Lewin chromosome, complete genome
Lineage: Saprospira grandis; Saprospira; Saprospiraceae; Sphingobacteriales; Bacteroidetes; Bacteria
General Information: Gliding bacterium. Saprospira grandis is a gram-negative, marine, multicellular, filamentous flexibacterium. They prey on other bacteria by trapping and devouring them. It is significant because it is known for devouring bacteria and also has been shown to digest algae by the same process. This makes this bacterium important because it is useful in preventing harmful algal blooms. They are mesophilic with their optimum temperature being between 25-30 degrees C, and require a neutral pH. This filamentous organism is matile by gliding. This organism is able to lyse bacterial cells on the surfaces it is moving over.
Subject: NC_010102:283364 Salmonella enterica subsp. enterica serovar Paratyphi B str. SPB7,
Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria
General Information: This strain (SGSC 4150; ATCC BAA-1250) was isolated from a stool sample of an infected woman in Penang, Malaysia, May 16, 2002. This strain is susceptible to antibiotics, and was classified as serovar Paratyphi B because it was unable to metabolize D-tartrate. Causes enteric infections. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis, from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.