Query: NC_016894:77853 Acetobacterium woodii DSM 1030 chromosome, complete genome
Lineage: Acetobacterium woodii; Acetobacterium; Eubacteriaceae; Clostridiales; Firmicutes; Bacteria
General Information: Acetobacterium woodii is a Gram positive, motile, strict anaerobic, acetogenic bacterium, that relies on Na+ as coupling ion in bioenergetic reactions. The organism can use a wide range of substrates, such as sugars, alcohols, methoxylated aromatic acids or C1 compounds. Electrons derived from these electron donors are used in the Wood-Ljungdahl-pathway where the organism fixes CO2 and produces acetate. The pathway of CO2-fixation is coupled to energy conservation via a chemiosmotic mechanism, one enzyme that seems to be involved is the Rnf complex. The produced Na+ gradient can be used to drive ATP-synthesis or flagella rotation. The ATP synthase is a member of the F1FO class of enzymes and has an unusual hybrid rotor. Can use alternative electron acceptors like the lignin degradation product caffeate.
Subject: NC_010475:2896000 Synechococcus sp. PCC 7002, complete genome
Lineage: Synechococcus; Synechococcus; Synechococcaceae; Chroococcales; Cyanobacteria; Bacteria
General Information: The cyanobacterium Synechococcus sp. PCC 7002 (formerly known as Agmenellum quadruplicatum strain PR-6) was originally isolated in 1961 by Chase Van Baalen from an onshore, marine mud flat sample derived from fish pens on Maguyes Island, La Parguera, Puerto Rico. The organism grows in brackish (euryhaline/marine) water and is unicellular but tends to form short filaments of two to four cells during exponential growth at the temperature optimum of 38 degrees C. The strain is extremely tolerant of high light intensities and has been grown at light intensities equivalent to two suns. This unique combination of physiological and genetic properties have long made this strain an important model system to studies of the oxygenic photosynthetic apparatus, the regulation of carbon and nitrogen metabolism, and other aspects of cyanobacterial physiology and metabolism.