Pre_GI: SWBIT SVG BLASTN

Query: NC_016114:1 Streptomyces flavogriseus ATCC 33331 chromosome, complete genome

Lineage: Streptomyces pratensis; Streptomyces; Streptomycetaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: Environment: Soil; Isolation: Soil; Temp: Mesophile. The genus Streptomyces consists of soil and water Gram positive filamentous bacteria well known for their ability to produce complex secondary metabolites including many antibiotics. Additionally they undergo complex multicellular development, with spores germinating to form a branched, multinucleoid substrate mycelium, which then produces an aerial mycelium which septates into uninucleoid spores. Streptomyces flavogriseus is an aerobic, Gram-positive bacterium isolated from soil. This organism produces cellulases and xyanases that are able to degrade cellulose and xylan.

No Graph yet!

Subject: NC_007005:4515853 Pseudomonas syringae pv. syringae B728a, complete genome

Lineage: Pseudomonas syringae; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This strain is the causal agent of brown spot disease on beans. It was isolated from a snap bean leaflet in Wisconsin, USA. Plant pathogen. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This species includes many plant pathogens of important crops, which makes it a model organism in plant pathology. Its natural environment is on the surface of plant leaves and it can withstand various stressful conditions, like rain, wind, UV radiation and drought. It can colonize plants in a non-pathogenic state and can rapidly take advantage of changing environmental conditions to induce disease in susceptible plants by shifting gene expression patterns.