Pre_GI: SWBIT SVG BLASTN

Query: NC_014654:2101500 Halanaerobium sp. 'sapolanicus' chromosome, complete genome

Lineage: Halanaerobium hydrogeniformans; Halanaerobium; Halanaerobiaceae; Halanaerobiales; Firmicutes; Bacteria

General Information: Environment: Fresh water, Sediment; Temp: Mesophile; Temp: 34 - 42C. Organisms identified in the genus Halanaerobium (also known as Haloanaerobium) were first isolated from the Great Salt Lake in Utah, USA and have since been isolated from diverse saline environments such as oil reserviors, brine-seawater interfaces and hypersaline sediments. These bacteria are extremely salt-tolerant and are able to grow in concentrations of salt as high as 25%.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_020134:2832857 Clostridium stercorarium subsp. stercorarium DSM 8532, complete

Lineage: Clostridium stercorarium; Clostridium; unclassified Ruminococcaceae; Clostridiales; Firmicutes; Bacteria

General Information: Lignocellulosic biomass has great potential as an abundant and renewable source of fermentable sugars through enzymic saccharification. Clostridium stercorarium is a catabolically versatile bacterium producing a wide range of hydrolases for degradation of biomass. Together with Clostridium thermocellum, Clostridium aldrichii and other cellulose degraders, it forms group I of the clostridia. It is moderately thermophilic, with an optimum growth temperature of 65 degrees C, and has repeatedly been isolated from self-heated compost. The two-component cellulase system of C. stercorarium has been investigated thoroughly. Due to its ability to utilize the various polysaccharides present in biomass it is especially suited for the fermentation of hemicellulose to organic solvents. Some isolates have been used in Japan in a single-step ethanol-fermenting pilot-process with lignocellulosic biomass as substrate.