Pre_GI: SWBIT SVG BLASTN

Query: NC_013961:1246454 Erwinia amylovora, complete genome

Lineage: Erwinia amylovora; Erwinia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This bacterium is the causative agent of Fire Blight, a destructive disease of Maloid fruit trees, such as apple and pear. Outbreaks are sporadic in the Northeast, but result in serious damage to roots, blossoms, fruit, and shoots when they occur. The pathogen overwinters in cankers or in smaller limbs. During early spring, in response to both temperature increases and bud development, the bacteria multiplies and may be seen as a yellowish ooze around the perimeter of the canker. Flies and other insects are attracted to the ooze and disperse the inoculum to other trees in the orchard. This species has recently become resistant to streptomycin, an antibiotic traditionally used in its control.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_020207:2240115 Enterococcus faecium NRRL B-2354, complete genome

Lineage: Enterococcus faecium; Enterococcus; Enterococcaceae; Lactobacillales; Firmicutes; Bacteria

General Information: This genera consists of organisms typically found in the intestines of mammals, although through fecal contamination they can appear in sewage, soil, and water. They cause a number of infections that are becoming increasingly a problem due to the number of antibiotic resistance mechanisms these organisms have picked up. Both Enterococcus faecalis and Enterococcus faecium cause similar diseases in humans, and are mainly distinguished by their metabolic capabilities. This opportunistic pathogen causes a range of infections similar to those observed with Enterococcus faecalis, including urinary tract infections, bacteremia (bacteria in the blood), and infective endocarditis (inflammation of the membrane surrounding the heart). Hospital-acquired infections from this organism are on the rise due to the emergence of antiobiotic resistance strains and has led to the rise of vancomycin-resistant Staphylococcus aureus strains due to the horizontal transfer of Enterococcus antibiotic resistance genes. Little is known about the virulence mechanisms in this organism, but the genome does encode an esp gene for the surface adhesin. Vancomycin resistant isolates are more typically Enterococcus faecium than Enterococcus faecalis.