Pre_GI: SWBIT SVG BLASTN

Query: NC_012781:302387 Eubacterium rectale ATCC 33656, complete genome

Lineage: Eubacterium rectale; Eubacterium; Eubacteriaceae; Clostridiales; Firmicutes; Bacteria

General Information: Eubacterium rectale ATCC 33656 was isolated from human feces. This genus has been isolated as normal flora from feces, rumen, and periodontal tissue. Eubacterium spp. are thought to play a beneficial role in maintaining the normal ecology of the large intestine, in part by producing chemicals like butyric acid which act to inhibit the growth of other bacteria. These organisms are occasionally isolated from wounds and abscesses and may be an opportunistic pathogen. This genus has also been isolated from sewage and soil.

No Graph yet!

Subject: NC_021182:4427468 Clostridium pasteurianum BC1, complete genome

Lineage: Clostridium pasteurianum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: Environment: Soil; Isolation: Coal-cleaning residues; Temp: Mesophile; Temp: 30C. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. Known opportunistic toxin-producing pathogens in animals and humans. Some species are capable of producing organic solvents (acetone, ethanol, etc,), molecular hydrogen and other useful compounds. Clostridium pasteurianum was first isolated from soil by the Russian microbiologist Sergey Winogradsky. This organism is able to fix nitrogen and oxidize hydrogen into protons. The genes involved in nitrogen fixation and hydrogen oxidation have been extensively studied in this organism.