Pre_GI: SWBIT SVG BLASTN

Query: NC_009442:277392 Streptococcus suis 05ZYH33 chromosome, complete genome

Lineage: Streptococcus suis; Streptococcus; Streptococcaceae; Lactobacillales; Firmicutes; Bacteria

General Information: Isolated from a human in Ziyang County, China, 2005. Causative agent of meningitis, endocarditis, septicemia and arthritis in swine. Streptococci are Gram-positive, nonmotile, nonsporeforming, catalase-negative cocci that occur in pairs or chains. Members of this genus vary widely in pathogenic potential. Most streptococci are facultative anaerobes, and some are obligate anaerobes. Serologic grouping is based on antigenic differences in cell wall carbohydrates, in cell wall pili-associated protein, and in the polysaccharide capsule in group B streptococci. Streptococcus suis is a pathogen of pigs and is responsible for a variety of diseases including meningitis, arthritis and pneumonia. Occasionally this organism can infect humans causing septicemia, meningitis and endocarditis.

No Graph yet!

Subject: NC_010001:2836995 Clostridium phytofermentans ISDg, complete genome

Lineage: Lachnoclostridium phytofermentans; Lachnoclostridium; Lachnospiraceae; Clostridiales; Firmicutes; Bacteria

General Information: Isolated from forest soil near the Quabbin Reservoir in Massachusetts, USA. This organism plays an important industrial and ecological role in the anaerobic fermentation of cellulose and produces economically significant levels of acetate and ethanol. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA.