Pre_GI: SWBIT SVG BLASTN

Query: NC_009438:212476 Shewanella putrefaciens CN-32 chromosome, complete genome

Lineage: Shewanella putrefaciens; Shewanella; Shewanellaceae; Alteromonadales; Proteobacteria; Bacteria

General Information: Shewanella putrefaciens is a Gram-negative bacterium. It has been isolated from marine environments, as well as from anaerobic sandstone in the Morrison formation in New Mexico, USA. S. putrefaciens is also a facultative anaerobe with the ability to reduce iron and manganese metabolically; that is, it can use iron and manganese as the terminal electron acceptor in the electron transport chain (in contrast to obligate aerobes which must use oxygen for this purpose). It is also one of the organisms associated with the odor of rotting fish, as it is a marine organism which produces trimethylamines (hence the species name putrefaciens, from putrid). This genus includes species that inhabit a wide range of environments and are capable of utilizing a wide variety of electron acceptors during anaerobic respiration including some insoluble metal oxides while using very few carbon sources such as lactate or acetate. This group of organisms have been studied extensively for their electron transport systems. This species, along with Shewanella algae, are the only Shewanella spp. to be found in clinical speciments. Normally found in marine environments in warmer temperatures, infections seem to occur more frequently in countries with a warm climate and in other countries during warm summer months.

No Graph yet!

Subject: NC_007951:3655088 Burkholderia xenovorans LB400 chromosome 1, complete sequence

Lineage: Burkholderia xenovorans; Burkholderia; Burkholderiaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: Originally identified as Pseudomonas sp. LB400 that was found in contaminated soil in upstate New York, USA, this organism is now classified in the genus Burkholderia. Polychlorinated biphenyl-degrading bacterium. Member of the genus Burkholderia are versatile organisms that occupy a surprisingly wide range of ecological niches. These bacteria are exploited for biocontrol, bioremediation, and plant growth promotion purposes. Burkholderia xenovorans has been found on fungi, animals, and from human clinical isolates such as from cystic fibrosis (CF) patients. It may be tightly associated with white-rot fungus, as the degadation of lignin by the fungus results in aromatic compounds the bacterium can then degrade. This organism is exceptionally capable of degradation of polychlorinated biphenyls (PCBs), which are environmental pollutants, and thus it may play a role in bioremediation of polluted and toxic sites and is studied as a model bioremediator. PCBs can be utilized as the sole carbon and energy source by this organism. The pathways for degradation of PCBs have been extensively characterized at both the genetic and the molecular level and have become a model system for the bacterial breakdown of these very persistent environmental contaminants.