Pre_GI: SWBIT SVG BLASTN

Query: NC_007517:1468719 Geobacter metallireducens GS-15, complete genome

Lineage: Geobacter metallireducens; Geobacter; Geobacteraceae; Desulfuromonadales; Proteobacteria; Bacteria

General Information: First isolated from the Potomac river downstream of Washington, DC, USA in 1987. This organism actively moves towards metal attractants such as iron and manganese oxides, which are insoluble, and produces type IV pili for attachment to the insoluble substrates. Common metal-reducing bacterium. This organism, similar to what is observed in Geobacteria sulfurreducens, couples the oxidation of organic molecules to the reduction of iron by using insoluble Fe (III) as an electron acceptor under anaerobic conditions. This bacterium plays an imporant part of the nutrient cycling in aquatic environments. The cell can also use uranium and plutonium, therefore, this organism and may be important for the bioremediation of contaminated waste sites.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_000962:1684005 Mycobacterium tuberculosis H37Rv, complete genome

Lineage: Mycobacterium tuberculosis; Mycobacterium; Mycobacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This strain has been derived from the original human-lung H37 isolate in 1934, and has been used extensively worldwide in biomedical research. Like other closely related Actinomycetales, such as Nocardia and Corynebacterium, mycobacteria have unusually high genomic DNA GC content and are capable of producing mycolic acids as major components of their cell wall. This bacterium is the causative agent of tuberculosis - a chronic infectious disease with a growing incidence worldwide. It infects 1.7 billion people a year (~33% of the entire world population) and causes over 3 million deaths/year. This bacterium does not form a polysaccharide capsule, and is an extremely slow growing obligate aerobe. This bacterium does not form a polysaccharide capsule, and is an extremely slow growing obligate aerobe. This bacterium does not form a polysaccharide capsule, and is an extremely slow growing obligate aerobe. The sluggish growth rate is a result of the tough cell wall that resists the passage of nutrients into the cell and inhibits waste products to be excreted out of the cell. The specialized cell envelope of this organism resembles a modified Gram positive cell wall. It also contains complex fatty acids, such as mycolic acids, that cause the waxy appearance and impermeability of the envelope. These acids are found bound to the cell envelope, but also form cord factors when linked with a carbohydrate component to form a cord-like structure. Primary infection occurs by inhalation of the organism in droplets that are aerosolized by an infected person. The organism initially replicates in cells of the terminal airways, after which it is taken up by, and replicates in, alveolar macrophages. Macrophages distribute the organism to other areas of the lungs and the regional lymph nodes. Once a cell-mediated hypersensitivity immune response develops, replication of the organism decreases and the bacteria become restricted to developing granulomas.