Query: NC_006624:2016000 Thermococcus kodakarensis KOD1, complete genome
Lineage: Thermococcus kodakarensis; Thermococcus; Thermococcaceae; Thermococcales; Euryarchaeota; Archaea
General Information: This organism was originally identified as Pyrococcus sp. strain KOD1. It was isolated from a solfatara on Kodakara Island, Japan. Hyperthermophilic archeon. This genus is a member of the order Thermococcales in the Euryarchaeota. Thermococcus sp. are the most commonly isolated hyperthermophilic organisms and are often isolated from marine hydrothermal vents and terrestrial hot sulfur springs. Elemental sulfur is either required for, or stimulates, growth. These obligate heterotrophs can ferment a variety of organic compounds, including peptides, amino acids, and sugars in the absence of sulfur. Thermococcus kodakaraensis is a hyperthermophilic archeon. Proteins from this organism have been extensively studied to find thermostable enzymes for industrial and biotechnological applications.
Subject: NC_010729:1549744 Porphyromonas gingivalis ATCC 33277, complete genome
Lineage: Porphyromonas gingivalis; Porphyromonas; Porphyromonadaceae; Bacteroidales; Bacteroidetes; Bacteria
General Information: This strain was isolated from human gingiva. This organism is associated with severe and chronic periodontal (tissues surrounding and supporting the tooth) diseases. Progression of the disease is caused by colonization by this organism in an anaerobic environment in host tissues and severe progression results in loss of the tissues supporting the tooth and eventually loss of the tooth itself. The black pigmentation characteristic of this bacterium comes from iron acquisition that does not use the typical siderophore system of other bacteria but accumulates hemin. Peptides appear to be the predominant carbon and energy source of this organism, perhaps in keeping with its ability to destroy host tissue. Oxygen tolerance systems play a part in establishment of the organism in the oral cavity, including a superoxide dismutase. Pathogenic factors include extracellular adhesins that mediate interactions with other bacteria as well as the extracellular matrix, and a host of degradative enzymes that are responsible for tissue degradation and spread of the organism including the gingipains, which are trypsin-like cysteine proteases.