Pre_GI: SWBIT SVG BLASTN

Query: NC_006510:2778777 Geobacillus kaustophilus HTA426, complete genome

Lineage: Geobacillus kaustophilus; Geobacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: Geobacillus kaustophilus strain HTA426 was first isolated from deep sea sediment of the Mariana Trench in the Pacific Ocean and belongs to a closely related group of thermophilic Bacillus spp. Members of this genus were originally classified as Bacillus. Recent rDNA analysis and DNA-DNA hybridization studies using spore-forming thermophilic subsurface isolates provided enough evidence to define the phylogenetically distinct, physiologically and morphologically consistent taxon Geobacillus. Geobacillus species are chemo-organotrophic, obligately thermophilic, motile, spore-forming, aerobic or facultatively anaerobic. This organism was compared with mesophilic Bacillus spp. to identify genome characteristics and specific genes related to thermophilia. Analysis of the amino acid compositions showed clear differences between Geobacillus kaustophilus and the mesophilic bacilli. In addition, the higher G+C content in Geobacillus kaustophilus rRNA also appears correlated to thermophilia. In addition, tRNA modification by the Geobacillus kaustophilus specific tRNA methyltransferases probably aids in the thermoadaptation of this organism.

No Graph yet!

Subject: NC_006177:520055 Symbiobacterium thermophilum IAM 14863, complete genome

Lineage: Symbiobacterium thermophilum; Symbiobacterium; Shewanellaceae; Clostridiales; Firmicutes; Bacteria

General Information: This symbiotic and thermophilic bacterium was discovered by screening for thermostable tryptanophases in Japanese compost. Cultured growth of this organism requires the presence of another bacterial species, such as a Bacillus or Escherichia coli, which provides diffusable metabolites required for its growth. Pure cultures can be obtained by growing Symbiobacterium thermophilum in a bioreactor, separated from its symbiotic counterpart by a dialysis membrane. Because of its symbiotic nature, it cannot be cultured with conventional methods. Despite a negative reaction for gram stain, this species is placed with the gram-positive bacteria based on 16s phylogenetic analysis.