Query: NC_004344:257471 Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis,
Lineage: Wigglesworthia glossinidia; Wigglesworthia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria
General Information: This organism is the obligate endosymbiont for the tsetse fly Glossina brevipalpis. As Wigglesworthia brevipalpis resides intracellularly, the resulting co-evolution with its host over millions of years has led to a drastic reduction in the bacterium's genome size, resulting in this its inability to survive outside the host. Tsetse fly endosymbiont. This organism is the obligate endosymbiont for the tsetse fly Glossina brevipalpis, Glossina tachinoides, Glossina palpalis palpalis, and Glossina austeni. The tsetse fly is a vector for African trypanosomes, and is the main transmitter of deadly diseases in animals and humans in Africa. The fly feeds on a restricted diet, exclusively consisting of vertebrate blood, and lacks certain metabolic compounds needed for survival and reproduction. To complement this lack in nutrients, the tsetse fly relies mainly on the intracellular bacterial symbiont, Wigglesworthia glossinidia for its viability and fecundity.
Subject: NC_011528:535680 Coxiella burnetii CbuK_Q154, complete genome
Lineage: Coxiella burnetii; Coxiella; Coxiellaceae; Legionellales; Proteobacteria; Bacteria
General Information: Coxiella burnetii K Q154 was isolated from a patient with endocarditis and contains the plasmid QpRS. This organism is widely distributed in nature and can cause infections in reptiles, birds, and mammals. It causes Q fever, or 'query' fever, an atypical pneumonia first associated with abattoir workers in Australia. Transmission may be through insect vectors such as ticks that have bitten an infected wild or domesticated animal, or through an aerosol produced by domesticated animals such as sheep or cattle. The presence of a plasmid is believed to be associated with virulence and pathogenicity, however C. burnetii isolates containing plasmid QpDG are avirulent in guinea pigs and plasmidless isolates have been associated with endocarditis in humans. Coxiella burnetii has a developmental life cycle, and can grow vegetatively through binary fission, or asymmetrically and produce a spore-like cell. The spore-like cell may enable the organism to exist extracellularly for small amounts of time. This bacterium is an obligate intracellular pathogen. It is endocytosed by a host cell, a macrophage for example, and lives and replicates inside the phagolysozome, a unique property of this organism. The genome encodes proteins that have a higher than average pI, which may enable adaptation to the acidic environment of the phagolysozome. The chromosome also contains genes for a number of detoxification and stress response proteins such as dismutases that allow growth in the oxidative environment. The type IV system is similar to the one found in Legionella, which may be important for intracellular survival. This organism produces numerous ankyrin-repeat proteins that may be involved in interactions with the host cell. The genome has 83 pseudogenes, which may be a result of the typical genome-wide degradation observed with other intracellular organisms and also has a group I intron in the 23S ribosomal RNA gene.