Pre_GI: SWBIT SVG BLASTN

Query: NC_003030:3251941 Clostridium acetobutylicum ATCC 824, complete genome

Lineage: Clostridium acetobutylicum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain was isolated in 1924 from garden soil in Connecticut, USA, by E. Wyer and L. Rettger. It is one of the best studied solventogenic clostridia. Solvent-producing bacterium. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. This organism is a benign saccharolytic and proteolytic soil bacterium capable of producing a number of organic solvents (solventogenic bacterium) through fermentation of various organic compounds. acetobutyricum were isolated by Chaim Weizman during the World War I and used to develop industrial starch-based acetone, butanol and ethanol fermentation processes.

No Graph yet!

Subject: NC_002488:2502000 Xylella fastidiosa 9a5c, complete genome

Lineage: Xylella fastidiosa; Xylella; Xanthomonadaceae; Xanthomonadales; Proteobacteria; Bacteria

General Information: This strain was derived from a pathogenic strain (8.1b) isolated in 1992 in France that had come from infected twigs derived from the sweet orange strain Valencia in Brazil in the same year. This organism was first identified in 1993 as the causal agent of citrus variegated chlorosis, a disease that affects varieties of sweet oranges. Other strains of this species cause a range of diseases in mulberry, pear, almond, elm, sycamore, oak, maple, pecan and coffee which collectively result in multimillion dollar devastation of economically important plants. Xylella fastidiosa is similar to Xanthomonas campestris pv. campestris in that it produces a wide variety of pathogenic factors for colonization in a host-specific manner including a large number of fimbrial and afimbrial adhesins for attachment. It does not contain a type III secretion system, but possesses genes for a type II secretion system for export of exoenzymes that degrade the plant cell wall and allow the bacterium to colonize the plant xylem.