Pre_GI: SWBIT SVG BLASTN

Query: NC_002607:1868371 Halobacterium sp. NRC-1, complete genome

Lineage: Halobacterium; Halobacterium; Halobacteriaceae; Halobacteriales; Euryarchaeota; Archaea

General Information: Chemoheterotrophic obligate extreme halophilic archeon. This microbe (strain ATCC 700922) is an obligately halophilic archeon that has adapted to growth under conditions of extremely high salinity. Motility is via tufts of polar flagella and intracellular gas vesicles are used for buoyancy. This organism grow aerobically and its ease of culturing combined with the availability of established methods of genetic manipulation in the laboratory make it an ideal model organism for study of the archaea.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_013890:808791 Dehalococcoides sp. GT chromosome, complete genome

Lineage: Dehalococcoides mccartyi; Dehalococcoides; Dehalococcoidaceae; Dehalococcoidales; Chloroflexi; Bacteria

General Information: Temp: Mesophile; Habitat: Fresh water, Groundwater. Dehalococcoides sp. GT was isolated from an chloroethene-contaminated aquifer. This strain can dechlorinate trichloroethene and vinyl chloride. This organism was isolated from environments contaminated with organic chlorinated chemicals such as tetrachloroethene (PCE) and trichloroethane (TCE), common contaminants in the anaerobic subsurface. There are at least 15 organisms from different metabolic groups, halorespirators, acetogens, methanogens and facultative anaerobes, that are able to metabolize PCE. Some of these organisms couple dehalogenation to energy conservation and utilize PCE as the only source of energy while others dehalogenate tetrachloroethene fortuitously. This non-methanogenic, non-acetogenic culture is able to grow with hydrogen as the electron donor, indicating that hydrogen/PCE serves as an electron donor/acceptor for energy conservation and growth. This organism can only grow anaerobically in the presence of hydrogen as an electron donor and chlorinated compounds as electron acceptors. Dehalococcoides ethenogenes is typically found at sites contaminated with chlorinated solvents, and have been independently isolated in dozens of sites across the USA.