Query: NC_000964:521975 Bacillus subtilis subsp. subtilis str. 168, complete genome Lineage: Bacillus subtilis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria General Information: This strain was derived in 1947 from an X-ray irradiated strain, Marburg. This organism was one of the first bacteria studied, and was named Vibrio subtilis in 1835 and renamed Bacillus subtilis in 1872. It is one of the most well characterized bacterial organisms, and is a model system for cell differentiation and development. This soil bacterium can divide asymmetrically, producing an endospore that is resistant to environmental factors such as heat, acid, and salt, and which can persist in the environment for long periods of time. The endospore is formed at times of nutritional stress, allowing the organism to persist in the environment until conditions become favorable. Prior to the decision to produce the spore the bacterium might become motile, through the production of flagella, and also take up DNA from the environment through the competence system.The sporulation process is complex and involves the coordinated regulation of hundreds of genes in the genome. This initial step results in the coordinated asymmetric cellular division and endospore formation through multiple stages that produces a single spore from the mother cell.
- Sequence; - BLASTN hit (Low score = Light, High score = Dark) - hypothetical protein; - cds: hover for description
General Information: This organism was isolated from environments contaminated with organic chlorinated chemicals such as tetrachloroethene (PCE) and trichloroethane (TCE), common contaminants in the anaerobic subsurface.There are at least 15 organisms from different metabolic groups, halorespirators, acetogens, methanogens and facultative anaerobes, that are able to metabolize PCE. Some of these organisms couple dehalogenation to energy conservation and utilize PCE as the only source of energy while others dehalogenate tetrachloroethene fortuitously. This non-methanogenic, non-acetogenic culture is able to grow with hydrogen as the electron donor, indicating that hydrogen/PCE serves as an electron donor/acceptor for energy conservation and growth. This organism can only grow anaerobically in the presence of hydrogen as an electron donor and chlorinated compounds as electron acceptors. Dehalococcoides ethenogenes is typically found at sites contaminated with chlorinated solvents, and have been independently isolated in dozens of sites across the USA.