Pre_GI: BLASTP Hits

Some Help

Query: NC_005126:4333767:4340910 Photorhabdus luminescens subsp. laumondii TTO1, complete genome

Start: 4340910, End: 4341191, Length: 282

Host Lineage: Photorhabdus luminescens; Photorhabdus; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain was isolated on Trinidad and Tobago. It is a symbiont of the nematode Heterorhabditis bacteriophora. Bioluminescent bacterium. This organism is unusual in that it is symbiotic within one insect, and pathogenic in another, the only organism that is known to exhibit this dual phenotype. Enzymes are then released by the bacteria that result in rapid degradation of the insect body, allowing both bacteria and nematode to feed and reproduce. During this period Photorhabdus luminescens releases bacteriocidal products, including antibiotics and bacteriocins, that prevent infection of the larva by competitive microbes. The result is promotion of Photorhabdus luminescens-nematode interactions that result in continuation of the symbiotic relationship. In order to engage in a symbiotic relationship with the nematode and a pathogenic one with the insect larva, the bacterium encodes specific factors that encourage both. These include a large number of genes that code for secreted toxins and enzymes, as well as genes that encode products for the production of antibiotics and bacteriocins. Secretion of these products occurs by an array of systems including type I, type II, and type III secretion systems. The type III system is closely related to the Yersinia plasmid-encoded type III system. Genes that promote symbiotic relationships are also encoded on genomic islands on the chromosome including some that affect nematode development. Virulence genes appear to be active during exponential growth. Symbiotic genes appear to function during stationary phase (post-exponential) growth. The switch from one state to another is controlled. Photorhabdus luminescens is capable of giving off light, a complex process that requires the products of the lux operon.




Search Results with any or all of these Fields

Host Accession, e.g. NC_0123..Host Description, e.g. Clostri...
Host Lineage, e.g. archae, Proteo, Firmi...
Host Information, e.g. soil, Thermo, Russia



SubjectStartEndLengthSubject Host DescriptionCDS descriptionE-valueBit score
NC_005126:1265071:131283113128311313517687Photorhabdus luminescens subsp. laumondii TTO1, complete genomehypothetical protein1e-31134
NC_005126:1613818:161819316181931618849657Photorhabdus luminescens subsp. laumondii TTO1, complete genomehypothetical protein3e-25114
NC_012962:1661683:167880016788001679423624Photorhabdus asymbiotica, complete genomesimilar to haemagluttinin from E.coli-cdia2e-1994
NC_013508:876431:9017899017899093907602Edwardsiella tarda EIB202, complete genomehypothetical protein4e-1373.6
NC_005126:4333767:4356175435617543571821008Photorhabdus luminescens subsp. laumondii TTO1, complete genomehypothetical protein5e-0959.7
NC_015566:4662171:4671740467174046732151476Serratia sp. AS12 chromosome, complete genomehypothetical protein6e-0856.2
NC_009708:1735903:1762407176240717701737767Yersinia pseudotuberculosis IP 31758 chromosome, complete genomehemagglutinin/adhesin repeat-containing protein5e-0753.1