Pre_GI: SWBIT SVG BLASTP

Query: NC_021150:2026496 Azotobacter vinelandii CA6, complete genome

Lineage: Azotobacter vinelandii; Azotobacter; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This organism was first isolated from the soil in Vineland, New Jersey, although it is found worldwide. It is a large obligate aerobe that has one of the highest respiratory rates of any organism. Azotobacter vinelandii also produces a number of unusual nitrogenases which allow it to fix atmospheric nitrogen to ammonia, a compound it can then use as a nitrogen source. It protects the oxygen-sensitive nitrogenase enzymes through its high respiratory rate, which sequesters the nitrogenase complexes in an anoxic environment. This organism has a number of unusual characteristics. Under extreme environmental conditions, the cell will produce a cyst that is resistant to dessication and is surrounded by two capsular polysaccharide layers. This organism produces two industrially important polysaccharides, poly-beta-hydroxybutyrate (PHB) and alginate. PHB is a thermoplastic biopolymer, and alginate is used in the food industry. Alginate is also used by the pathogen Pseudomonas aeruginosa to infect the lungs of cystic fibrosis patients.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_010337:1051425 Heliobacterium modesticaldum Ice1, complete genome

Lineage: Heliobacterium modesticaldum; Heliobacterium; Heliobacteriaceae; Clostridiales; Firmicutes; Bacteria

General Information: Heliobacterium modesticaldum strain Ice1, the type strain of this species, was isolated from Icelandic hot spring volcanic soils. It grows optimally above 50 degrees Celsius, grows best photoheterotrophically, but can grow in the dark chemotrophically on pyruvate. Phototrophic thermophile. This organism is an anoxygenic phototroph isolated from hot spring microbial mats and volcanic soil. Cell wall structure, the ability to form endospores, and 16S ribosomal RNA analysis place Heliobacterium modesticaldum in a family of phototrophic bacteria related to the Clostridia. Heliobacterium modesticaldum is able to fix nitrogen and may contribute significantly to the nitrogen availability in microbial mats.