Pre_GI: SWBIT SVG BLASTP

Query: NC_021150:1965264 Azotobacter vinelandii CA6, complete genome

Lineage: Azotobacter vinelandii; Azotobacter; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This organism was first isolated from the soil in Vineland, New Jersey, although it is found worldwide. It is a large obligate aerobe that has one of the highest respiratory rates of any organism. Azotobacter vinelandii also produces a number of unusual nitrogenases which allow it to fix atmospheric nitrogen to ammonia, a compound it can then use as a nitrogen source. It protects the oxygen-sensitive nitrogenase enzymes through its high respiratory rate, which sequesters the nitrogenase complexes in an anoxic environment. This organism has a number of unusual characteristics. Under extreme environmental conditions, the cell will produce a cyst that is resistant to dessication and is surrounded by two capsular polysaccharide layers. This organism produces two industrially important polysaccharides, poly-beta-hydroxybutyrate (PHB) and alginate. PHB is a thermoplastic biopolymer, and alginate is used in the food industry. Alginate is also used by the pathogen Pseudomonas aeruginosa to infect the lungs of cystic fibrosis patients.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_013416:1526920 Aggregatibacter actinomycetemcomitans D11S-1, complete genome

Lineage: Aggregatibacter actinomycetemcomitans; Aggregatibacter; Pasteurellaceae; Pasteurellales; Proteobacteria; Bacteria

General Information: Aggregatibacter actinomycetemcomitans D11S-1 was recovered from a subject with aggressive periodontitis. Aggregatibacter actinomycetemcomitans, previously Actinobacillus actinomycetemcomitans typically resides in the oral cavity of humans and animals and can cause a number of diseases. The bacterium, along with 3 other organisms, is the main culprit in periodontis, which results in devastation to the bone supporting the teeth. Adherence to oral surfaces is controlled through the tad (tight adherence) locus, which may express proteins that are involved in type IV secretion.