Pre_GI: SWBIT SVG BLASTP

Query: NC_021150:2026496 Azotobacter vinelandii CA6, complete genome

Lineage: Azotobacter vinelandii; Azotobacter; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This organism was first isolated from the soil in Vineland, New Jersey, although it is found worldwide. It is a large obligate aerobe that has one of the highest respiratory rates of any organism. Azotobacter vinelandii also produces a number of unusual nitrogenases which allow it to fix atmospheric nitrogen to ammonia, a compound it can then use as a nitrogen source. It protects the oxygen-sensitive nitrogenase enzymes through its high respiratory rate, which sequesters the nitrogenase complexes in an anoxic environment. This organism has a number of unusual characteristics. Under extreme environmental conditions, the cell will produce a cyst that is resistant to dessication and is surrounded by two capsular polysaccharide layers. This organism produces two industrially important polysaccharides, poly-beta-hydroxybutyrate (PHB) and alginate. PHB is a thermoplastic biopolymer, and alginate is used in the food industry. Alginate is also used by the pathogen Pseudomonas aeruginosa to infect the lungs of cystic fibrosis patients.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_014538:187747 Thermoanaerobacter sp. X513 chromosome, complete genome

Lineage: Thermoanaerobacter; Thermoanaerobacter; Thermoanaerobacteraceae; Thermoanaerobacterales; Firmicutes; Bacteria

General Information: Country: USA; Environment: Fresh water; Isolation: Deep subsurface location at the Piceance Basin, Colorado, USA; Temp: Thermophile; Temp: 60C. Thermoanaerobacter sp. (strain X513) is an anaerobic, extreme thermophilic Gram-positive bacterium isolated by anaerobic enrichment culture from a deep subsurface sample (2000 m below the surface) taken from a core hole at the Piceance Basin, Colorado, USA. It can use a variety of electron donors, including glucose, acetate, hydrogen and xylose while reducing iron, chromium and uranium at 60 degrees.