Pre_GI: SWBIT SVG BLASTP

Query: NC_018145:147759 Zymomonas mobilis subsp. mobilis ATCC 29191 chromosome, complete

Lineage: Zymomonas mobilis; Zymomonas; Sphingomonadaceae; Sphingomonadales; Proteobacteria; Bacteria

General Information: Isolation: Fermenting Elaeis palm sap; Temp: Mesophile. The natural habitat of this organism includes sugar-rich plant saps where the bacterium ferments sugar to ethanol. The high conversion of sugars to ethanol makes this organism useful in industrial production systems, particularly in production of bioethanol for fuel. A recombinant strain of this bacterium is utilized for the conversion of sugars, particularly xylose, which is not utilized by another common sugar-fermenting organism such as yeast, to ethanol. Since xylose is a common breakdown product of cellulose or a waste component of the agricultural industry, it is an attractive source for ethanol production. Zymomonas mobilis was chosen for this process as it is ethanol-tolerant (up to 120 grams of ethanol per litre) and productive (5-10% more ethanol than Saccharomyces). This bacterium ferments using the Enter-Doudoroff pathway, with the result that less carbon is used in cellular biomass production and more ends up as ethanol, another factor that favors this organism for ethanol production.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_013716:5201097 Citrobacter rodentium ICC168, complete genome

Lineage: Citrobacter rodentium; Citrobacter; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Citrobacter rodentium is the causative agent of transmissible murine colonic hyperplasia in mice. This disease is characterized by a hyperproliferation of the epithelial cells in the colon similar to that found in humans suffering from idiopathic inflammatory bowel disease. In addition this organism contains virulence factors similar to those found in enterohemorrhagic Escherichia coli and enteropathogenic E. coli. C. rodentium are being used as models for studying mucosal response to infection, colon tumor production, and virulence associated with pathogenic E. coli.