Pre_GI: SWBIT SVG BLASTP

Query: NC_018080:5192264 Pseudomonas aeruginosa DK2 chromosome, complete genome

Lineage: Pseudomonas aeruginosa; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This organism is an opportunistic human pathogen. While it rarely infects healthy individuals, immunocompromised patients, like burn victims, AIDS-, cancer- or cystic fibrosis-patients are at increased risk for infection with this environmentally versatile bacteria. It is an important soil bacterium with a complex metabolism capable of degrading polycyclic aromatic hydrocarbons, and producing interesting, biologically active secondary metabolites including quinolones, rhamnolipids, lectins, hydrogen cyanide, and phenazines. Production of these products is likely controlled by complex regulatory networks making Pseudomonas aeruginosa adaptable both to free-living and pathogenic lifestyles. The bacterium is naturally resistant to many antibiotics and disinfectants, which makes it a difficult pathogen to treat.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_008260:497855 Alcanivorax borkumensis SK2, complete genome

Lineage: Alcanivorax borkumensis; Alcanivorax; Alcanivoracaceae; Oceanospirillales; Proteobacteria; Bacteria

General Information: This bacterium was isolated from a seawater sediment sample in the North Sea. The species is able to use Mihagol-S (C14,15-n-alkanes) as a principal carbon source. Using n-alkanes as a sole carbon source causes the strains to produce extracellular and membrane-bound surface-active glucose lipids. Phenotypic analysis showed a restricted nutritional profile, high halotolerance, the absence of fermentative metabolism, and a low G+C content. This, in combination with a 16S phylogenetic study, allowed the placing of this organism into a new genus.