Pre_GI: SWBIT SVG BLASTP

Query: NC_017367:1505780 Helicobacter pylori F57, complete genome

Lineage: Helicobacter pylori; Helicobacter; Helicobacteraceae; Campylobacterales; Proteobacteria; Bacteria

General Information: This genus consists of organisms that colonize the mucosal layer of the gastrointestinal tract or are found enterohepatically (in the liver). It was only recently discovered (1983) by two Australians (Warren and Marshall) that this organism was associated with peptic ulcers. It is one of the most common chronic infectious organisms, and is found in half the world's population. This organism attacks the gastric epithilial surface, resulting in chronic gastritis, and can cause more severe diseases including those that lead to gastric carcinomas and lymphomas, peptic ulcers, and severe diarrhea. It is an extracellular pathogen that persists in the gastric environment, which has a very low pH, by production of the urease enzyme, which converts urea to ammonia and carbon dioxide, a process which can counteract the acidic environment by production of a base. The toxins include cytolethal distending toxin, vacuolating cytotoxin (VacA) that induces host epithelial cell apopoptosis (cell death), and the cytotoxin associated antigen (CagA) which results in alteration to the host cell signalling pathways. The CagA protein is translocated into host cells by a type IV secretion system encoded by the cag pathogenicity island.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_011891:17940 Anaeromyxobacter dehalogenans 2CP-1, complete genome

Lineage: Anaeromyxobacter dehalogenans; Anaeromyxobacter; Myxococcaceae; Myxococcales; Proteobacteria; Bacteria

General Information: This strain (2CP-1; ATCC BAA-258) is the type strain for the species and was isolated from stream sediment near Lansing, Mich., USA. This anaerobic species was originally isolated by enrichment and isolation of single plate-grown colonies, and was the first pure culture of myxobacteria able to grow anaerobically. The unique physiological characteristics of this organism include the ability to use ortho-substituted mono- and dichlorinated phenols, nitrate, H2 and fumarate as terminal electron acceptors.