Pre_GI: SWBIT SVG BLASTP

Query: NC_017267:1348005 Xanthomonas oryzae pv. oryzicola BLS256 chromosome, complete

Lineage: Xanthomonas oryzae; Xanthomonas; Xanthomonadaceae; Xanthomonadales; Proteobacteria; Bacteria

General Information: These organisms are almost exclusively found associated with their plant hosts and are not found free in the soil. Xanthomonas oryzae contains two pathovars which cause enconomically significant diseases in rice. Xanthomonas oryzae pathovar oryzicola causes bacterial streak. This disease is common in tropical area and can cause crop losses of up to 32%. Xanthomonas oryzae pathovar oryzae causes bacterial leaf blight which is one of the most serious diseases of rice. This disease is common in temperate and tropical areas and can cause significant crop loss.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_008149:2802392 Yersinia pestis Nepal516, complete genome

Lineage: Yersinia pestis; Yersinia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Isolated from a soil sample from Nepal. Causative agent of plague. Specific virulence factors are encoded within pathogenicity islands (PAIs) that are required for the invasive phenotype associated with Yersinia infections. One key virulence plasmid contained by the three human-specific pathogens is pCD1/pYv, which encodes a type III secretion system for the delivery of virulence proteins that contribute to internalization into the host cell. It is the causative agent of plague (bubonic and pulmonary) a devastating disease which has killed millions worldwide. The organism can be transmitted from rats to humans through the bite of an infected flea or from human-to-human through the air during widespread infection. Yersinia pestis is an extremely pathogenic organism that requires very few numbers in order to cause disease, and is often lethal if left untreated. The organism is enteroinvasive, and can survive and propagate in macrophages prior to spreading systemically throughout the host. Yersinia pestis consists of three biotypes or serovars, Antiqua, Mediavalis, and Orientalis, that are associated with three major pandemics throughout human history. pMT1 encodes a protein, murine toxin, that aids rat-to-human transmission by enhancing survival of the organism in the flea midgut. Yersinia pestis also contains a PAI on the chromosome that is similar to the SPI-2 PAI from Salmonella that allows intracellular survival in the organism.