Pre_GI: SWBIT SVG BLASTP

Query: NC_017262:623351 Zymomonas mobilis subsp. mobilis ATCC 10988 chromosome, complete

Lineage: Zymomonas mobilis; Zymomonas; Sphingomonadaceae; Sphingomonadales; Proteobacteria; Bacteria

General Information: Country: Mexico; Environment: Food; Isolation: Fermenting Agave juice; Isolation: originally isolated as Pseudomonas lindneri; Temp: Mesophile; Temp: 30C. The natural habitat of this organism includes sugar-rich plant saps where the bacterium ferments sugar to ethanol. The high conversion of sugars to ethanol makes this organism useful in industrial production systems, particularly in production of bioethanol for fuel. A recombinant strain of this bacterium is utilized for the conversion of sugars, particularly xylose, which is not utilized by another common sugar-fermenting organism such as yeast, to ethanol. Since xylose is a common breakdown product of cellulose or a waste component of the agricultural industry, it is an attractive source for ethanol production. Zymomonas mobilis was chosen for this process as it is ethanol-tolerant (up to 120 grams of ethanol per litre) and productive (5-10% more ethanol than Saccharomyces). This bacterium ferments using the Enter-Doudoroff pathway, with the result that less carbon is used in cellular biomass production and more ends up as ethanol, another factor that favors this organism for ethanol production.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_007948:4646344 Polaromonas sp. JS666, complete genome

Lineage: Polaromonas; Polaromonas; Comamonadaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: This strain was isolated from sediment contaminated with cis-dichloroethane (cDCE), a common pollutant resulting from widespread manufacture and use of industrial solvents. This bacterium is the only known organism capable of using cDCE as a sole carbon and energy source. The ability of this strain to convert ethene to epoxyethane suggests that the first step in the cDCE biodegradation pathway is the oxidation of cDCE to an epoxide compound. Bacteria that are able to grow on cDCE are rare, and have only been found in very few highly selective artificial environments. The discovery of this bacteria may provide a low cost, self-sustaining bioremediation method in areas where cDCE is a problem contaminant.