Pre_GI: SWBIT SVG BLASTP

Query: NC_017259:25400 Buchnera aphidicola str. Ua (Uroleucon ambrosiae) chromosome,

Lineage: Buchnera aphidicola; Buchnera; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: It is believed that the Buchnera provide the essential nutrients the host lacks. Besides a nutritional co-dependence, due to a co-existence of millions of years, Buchnera have lost the ability to produce cell surface components such as lipopolysaccharides. This makes for an obligate endosymbiont relationship between host and Buchnera. Buchnera are prokaryotic cells which belong to the gamma-Proteobacteria, closely related to the Enterobacteriaceae family. Phylogenetic studies using 16S rRNA indicate that the symbiotic relationship was established around 200-250 million years ago. Since Buchnera are closely related to Escherichia coli and Haemophilus influenzae, comparative genomic studies can shed light on the evolutionary mechanisms of intracellular endosymbiosis as well as the different underlying molecular basis between organisms with parasitic behavior and symbionts.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_015711:5479879 Myxococcus fulvus HW-1 chromosome, complete genome

Lineage: Myxococcus fulvus; Myxococcus; Myxococcaceae; Myxococcales; Proteobacteria; Bacteria

General Information: This organism, like other myxobacteria, undergoes a complex development and differentiation pathway. When cell density increases, the organism switches to "social motility" where aggregates of cells can gather together into masses termed fruiting bodies that may consist of up to 100 000 cells. The motility system is not dependent on flagella like most bacteria, but instead relies on twitching pili: short extracellular appendages that may function analogously to oars in a rowboat. The myxobacteria have proved to be a rich source of novel natural products. Myxococcus fulvus produces a number of antibacterial, antifungal and cytotoxic substances which are being studies for therapeutic applications.