Pre_GI: SWBIT SVG BLASTP

Query: NC_017249:7341428 Bradyrhizobium japonicum USDA 6, complete genome

Lineage: Bradyrhizobium japonicum; Bradyrhizobium; Bradyrhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: This nitrogen-fixing bacterium develops a symbiotic relationship with the soybean plant Glycine max and is related to other N2-fixing Rhizobia which are symbiotic with legumes. The bacterium establishes itself in a root nodule which provides a protective environment for the organism to live while the bacterium provides the plant cell with nitrogen. This is an agriculturally important symbiotic relationship as it obviates the need for expensive and environmentally damaging fertilizer.Genes that code for proteins involved in root nodulation are carried on the chromosome. The production of the nodulation signal, lipochitin, is directed by genes which are turned on in the presence of plant flavonoid compounds. The bacteria are endocytosed into a cortical cell, and are enclosed within a membrane bound organelle termed the symbiosome.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_010501:3671517 Pseudomonas putida W619, complete genome

Lineage: Pseudomonas putida; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: Pseudomonas putida is a common endophytic and rhizosphere bacterium. Pseudomonas putida W619 was isolated from the Black Cottonwood tree and is closely related to other endophytic and rhizosphere strains of Pseudomonas putida. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. As they are metabolically versatile, and well characterized, it makes them great candidates for biocatalysis, bioremediation and other agricultural applications. Certain strains have been used in the production of bioplastics.