Pre_GI: SWBIT SVG BLASTP

Query: NC_017249:8427163 Bradyrhizobium japonicum USDA 6, complete genome

Lineage: Bradyrhizobium japonicum; Bradyrhizobium; Bradyrhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: This nitrogen-fixing bacterium develops a symbiotic relationship with the soybean plant Glycine max and is related to other N2-fixing Rhizobia which are symbiotic with legumes. The bacterium establishes itself in a root nodule which provides a protective environment for the organism to live while the bacterium provides the plant cell with nitrogen. This is an agriculturally important symbiotic relationship as it obviates the need for expensive and environmentally damaging fertilizer.Genes that code for proteins involved in root nodulation are carried on the chromosome. The production of the nodulation signal, lipochitin, is directed by genes which are turned on in the presence of plant flavonoid compounds. The bacteria are endocytosed into a cortical cell, and are enclosed within a membrane bound organelle termed the symbiosome.

No Graph yet!

Subject: NC_003902:714478 Xanthomonas campestris pv. campestris str. ATCC 33913, complete

Lineage: Xanthomonas campestris; Xanthomonas; Xanthomonadaceae; Xanthomonadales; Proteobacteria; Bacteria

General Information: This strain was originally isolated from cabbage. Causes black rot disease in crucifers. This genus consists of plant-specific yellow-pigmented microbes, some of which are economically important phytopathogens that devastate crops such as citrus plants, rice, beans, grape, and cotton. These organisms are almost exclusively found associated with their plant hosts and are not found free in the soil. This species is a major cause of black rot in crucifers, a disease that results in massive tissue degeneration. It also produces an extracellular polysaccharide known as xanthan, which is harvested commercially as a food stabilizing agent for use in industry.