Pre_GI: SWBIT SVG BLASTP

Query: NC_017223:51180 Bordetella pertussis CS chromosome, complete genome

Lineage: Bordetella pertussis; Bordetella; Alcaligenaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: This group of organisms is capable of invading the respiratory tract of animals and causing severe diseases. They express a number of virulence factors in order to do this including filamentous hemagglutins for attachment, cytotoxins, and proteins that form a type III secretion system for transport of effector molecules into host cells. This organism, which is unable to persist in the environment, is a strict human pathogen that causes whooping cough. Once a common cause of death in children the development of a vaccine has greatly decreased the number of deaths due to Bordetella pertussis. However, this organism infects and estimated 39 million people and kills hundreds of thousands of people each year.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_002516:3519000 Pseudomonas aeruginosa PAO1, complete genome

Lineage: Pseudomonas aeruginosa; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This organism is an opportunistic human pathogen. While it rarely infects healthy individuals, immunocompromised patients, like burn victims, AIDS-, cancer- or cystic fibrosis-patients are at increased risk for infection with this environmentally versatile bacteria. It is an important soil bacterium with a complex metabolism capable of degrading polycyclic aromatic hydrocarbons, and producing interesting, biologically active secondary metabolites including quinolones, rhamnolipids, lectins, hydrogen cyanide, and phenazines. Production of these products is likely controlled by complex regulatory networks making Pseudomonas aeruginosa adaptable both to free-living and pathogenic lifestyles. The bacterium is naturally resistant to many antibiotics and disinfectants, which makes it a difficult pathogen to treat.